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The fast fourier transformation (FFT) is well known to be extremely 
fast and useful. However, its spectrum is quite often not accurate, 
because it is a discrete transformation and, further, the effect of finite 
range of sampling, the so-called Gibbs phenomenon, produces long 
tails. Here a very simple and efficient method to extract the accurate 
frequencies and the amplitudes of discrete spectra from FFT data is 
proposed. NO window function is used in the present method, Indeed, 
our numerical examples show that the resultant frequencies and 
amplitudes are extremely accurate. c 1992 Academvz Pew. Inc 

I. INTRODUCTION 

Quasi-periodic functions which are of the form 

d(t) = C C, cos(f,t) + S, sin(f,t) (-cc d t < 00) 
WI>0 

(1.1) 

appear frequently in science and engineering. For example, 
in classical mechanics, coordinates and momenta of a par- 
ticle in multiply periodic motions, such as molecular vibra- 
tions, can be represented as in the above expression [I]. 
Theoretically, the action-angle variables can be obtained by 
a certain procedure [2], in which the frequencies (f,) and 
amplitudes (S, and C,), play essential roles. In principle, 
the continuous Fourier trasformation can reproduce these 
values from the time series data of b(t). In practice, 
however, it is quite often required to extract them from a 
finite set of discrete sampling points with high accuracy and 
high speed. From the viewpoint of speed, the celebrated 
fast Fourier transformation (FFT) technique is almost 
exclusively used practically. However, the accuracy of the 
results by FFT is considerably limited, since FFT is not 
really a continuous integral transformation but a discrete 
one performed within a finite range. Therefore, if an actual 
frequency, say f,, is located in between two frequencies 
which are given by FFT automatically, the FFT spectra at 

these sandwiching points oscillate violently with different 
signs. Furthermore, these peaks have long tails, which are 
due to sudden truncation of the series of sampling data (the 
so-called Gibbs phenomenon). An example of this situation 
is depicted in Fig. 1. 

One of the methods to avoid the long-tail behavior is to 
apply the so-called window technique. It is well known that 
a bell-shaped window function, for instance, can well reduce 
the truncation effect [2,3]. On the other hand, the data 
thus windowed are biased and the height of the spectral 
peaks is lowered. In order to suppress the tails and also to 
obtain accurate heights simultaneously, FFT is sometimes 
performed two times with different types of windows for 
each purpose. A recent and important example of the 
application of a window technique can be found in Ref. [2], 
which also briefly reviews the former works. It is also a usual 
practice to vary the length of sampling set to lead one of the 
FFT frequencies to come very close to a true frequency. 
These procedures are generally very tedious. 

In this paper, I propose a method to obtain the accurate 
frequencies and amplitudes of quasi-periodic functions from 
their FFT spectra with no use of such a window function 
technique. The idea is very simple and its implementation 
and usage are extremely easy. 

II. BASIC PROCEDURES 

A. FFT 

We consider a function having only two frequencies in 
Eq. (1.1) without loss of generality for the presentation of 
our procedure, namely, 

with 

4(f) =&s(t) + O,(t) (2.la) 

fjr( t) = C, cos(ft) + S, sin(ft) (2.lb) 
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FIG. 1. The cosine-FFT spectrum for 4(t) = cos(lO.0 1) + 
2.0 sin( 11.0 t): One of the discretized frequencies given by FFT happens to 
be extremely close to 10.0, and, correspondingly, a single sharp peak is 
produced. On the other hand, the sine component in d(t) is detected even 
in the cosine transformation with a large amplitude oscillation which is 
accompanied by long tails. 

and 

d,(t) = C, cos( gt) + S, sin( gt). (2.lc) 

The frequencies f and g are assumed not very close to each 
other throughout the present paper. The cosine-FFT and 
sine-FFT are usually defined as 

F,(k)=$$’ cos (T) CQf(j AtI + d,(.kwl (2.2) 
,=o 

and 

F,(k) = $ Nf’ sin (y) b+r(j df) + d,(j wi (2.3) 
/=I 

with 

At = TIN, (2.4) 

where T and N are the sampling length and number, 
respectively. 

By inserting Eqs. (2.1) in Eqs. (2.2) and (2.3), we have 

Fc(k)=A,,W,f) c,+A..(kf) S, 

+ &.(k g) C, + A,,(k 8) S, (2.5) 

and 

+ A& g) C, + Ass@, 8) S,. (2.6) 

The definitions of the above functions, such as A,,.(k, f ), are 
obvious. For example, 

A,.,(k, f) = $ yil cos ( y) sin(fj At). 
J=o 

(2.7) 

It is obvious that if nonlinear parameters f and g are known, 
linear parameters C,, S,, C,, and S, can be determined by 
various types of linear equations such as Eqs. (2.5) and 
(2.6). 

B. Approximate Evaluation of FFT 

FFT is a very fast approximation to the true Fourier 
transformation. Here we invert the standpoint: The true 
Fourier transformation is viewed as an approximation to 
FFT. Let us rewrite Eq. (2.2) as follows: 

FJk)=$~~‘cos(~Al) [4~(jAt)+4,(jAt)l At. 
,=o 

(2.8) 

Under a condition that At is “sufficiently” small, the above 
sum is evaluated approximately by an integral 

I;;.(k) g $jo’ dt cos (F) Cdr(t) + d,(N~ (2.9) 

which is simply a return to the continuous Fourier 
transform. This integral can be evaluated exactly, the result 
being 

C, sin(fT) 
F,(k) = - 

C, sin(fT) 
Tf -2xkJT+irf +2nk/T 

S,cos(fT)- 1 S,cos(fT)- 1 
T f - 2nklT -7 f+2rtk/T 

+Cp sin(gT) 
T g - 2xklT 

+s sinW7 
T g + 2nk/T 
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In a similar way, sine-FFT is also evaluated as 

C,cos(fT) - 1 
F,(k) = - 

CfCOS(fT) - 1 
T f-27cklT T f +2nkfT 

+s/ sin(fT) S, sin(fT) -- 
Tf -2xk/T Tf +2xklT 

+c,cos(gT)- 1 C,cos(gT)- 1 
T g-2xklT T g+2zk/T 

+s WgT) S, sin(gT) 

T g - 2rck/T T g + 2rck/T’ 
(2.11) 

In Eqs. (2.10) and (2.11), the oscillatory behavior shown in 
Fig. 1 is quite apparent. Before proceeding, let us confirm 
that in these expressionsf, g, C,, and s,are unknown, while 
F,.(k) and F,(k) are known as the FFT spectra. 

C. First Guess of the Frequencies 

We assume that the true frequency f is located in the 
range 

(2.12) 

where K is one of k’s Such K can be easily found by inspect- 
ing FFT spectra or its power. The sudden change of the sign 
of F,.(k) in the k-coordinate is helpful to find the K. Then the 
far dominant term in Eq. (2.10) for k = K is 

F(K)xlC,sin(fT)-S/Ccos(fT)- 11 
c T f - 2nK/T 

(2.13) 

andthatfork=K+l, 

The other terms are very small. In addition, we have 
assumed that T is chosen so that sin( f T) is not very small. 

Although both C, and Li’, are unknown at this moment, 
they are cancelled out by taking the ratio of Eqs. (2.13) and 
(2.14) such that 

(2.15) 

and f is given in turn as 

(2.16) 

Thus we can make a first guess of$ The similar procedure 
can be carried out using the sine-FFT data. We have 
observed that the difference between the two guesses is 
generally very small and accordingly we adopt the simple 
average of them hereafter. Moreover, our numerical 
experience has shown that the f value thus guessed is 
already fairly close to the exact one. The same procedure 
can be carried out independently for the frequency g. 

D. First Guess of the Amplitudes (Linear Equation Method) 

Now that the first guess of the frequencies have been 
obtained, it is almost straightforward to calculate the 
amplitudes, since these are linear parameters and FFT is a 
linear transformation. For completeness, we list below three 
methods that are applied in our practical calculation. 

Method A. A simple way to obtain the amplitudes is by 
making use of Eqs. (2.5) and (2.6). It is assumed that g 
satisfies 

2l.c 
7L<g<$(L+l). 

Further let K’ be either one of K and K+ 1, which is closer 
to f in the sense of Eq. (2.12), and similarly choose L’ in 
Eq. (2.17). Then by putting k= K’ and k= L’ in Eqs. (2.5) 
and (2.6), we have simultaneous linear equations, the 
number of which is equal to that of the unknown. In our 
example, that is 

A,.,.(K',f) &(K',f) &W', g) Acs(K'> g) C, 
A,,W',f) A,,(K'>f) Asc(K', g) Ass(K'> g) S, 
A,,W',f) &W',f) AcAL', 8) AcAL', g) Cg 
A,,(L',f) I[ 1 A,AL',f) A,,@', g) A,@', 8) S, rF,.W)l 

(2.18) 

Thus the first guess of the amplitudes can be obtained. The 
matrix elements in Eq. (2.18) can be evaluated through the 
expressions as in Eq. (2.7). Alternatively, they can be 
approximated by the integral representation as in Eq. (2.9). 
For example, the approximation of A,,(K, f) is obtained as 
a coefficient of C, in Eq. (2.10) by comparing Eqs. (2.5) and 
(2.10). From this approximation, it is seen that iff T and/or 
gT are very close to an integer multiple of 27~ and k is not 
properly chosen, the matrix {A,,} becomes nearly singular. 
This was already pointed out below Eq. (2.14). The above 
method based on Eq. (2.18) is convenient in that the matrix 
{A,,} and the vector {F,} are decoupled more or less to 
each frequency region as the functions of k. For example, 
the off-diagonal terms A,,( K’, g )‘s in Eq. (2.18) are all small 
if f and g are sufficiently separated. This fact will lead to 
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an iterative method to solve- Eq. (2.18) locally at each 
frequency part as will be described in Subsection IIF. 

Method B. A major drawback of Eq. (2.18) is, 
however, that the evaluation of {A,,) is a little time con- 
suming and, moreover, certain error is expected to arise: 
Remember that the values off and g to be put in {A,,} are 
approximate ones, which were obtained in the preceding 
subsection. Even if bothfand g are reasonably good, sin(B) 
and cos(>), for example, deviate from the exact values as t 
becomes large and, correspondingly, this takes place as j 
becomes large in Eq. (2.7). A very simple way to circumvent 
this is to use the initial data {#(j dt) 1 j= 1,2, . . . . N} 
directly. We have the equations 

cos(fj At) Cf+ sin(fj dt) S, + cos(gj dt) C, 

+sin(gjdt)S,=&dt) (2.19) 

for j= 0, 1, . . . . N - 1. Here again f and g are only 
approximated quantities. Equations (2.19) can be inverted 
to obtain the amplitudes, where thej’s have to be chosen to 
be small enough, and the resultant linear equations should 
be made mutually independent. 

Method C. In many physical problems, one has to treat 
anharmonic problems, where fundamental frequencies are 
accompanied by many harmonics. In such a case, it is often 
that the number of harmonics to be included is not known 
clearly, since the high harmonics tend to have diminishing 
amplitudes, For these problems, the above methods A and 
B do not always work, because the truncated components 
can generate numerical instability and, thereby, large error. 
Here we assume that the fundamental frequencies f and g 
are associated with some harmonics mf and ng, where 
m = 1, 2, . . . . and n = 1, 2, . . . . Then we can construct a 
least-squares procedure by minimizing the functional 

C [4(fi) - C {Cmf COs(mff,) + S, SWWi)} 

1 
2 

- 1 {C, cos(ngt,) + S,, sin(ngt,)} , (2.20) 
” 

where ti are sampling points which should be selected 
among the short time data and make the resultant linear 
equations nonsingular. One of these simultaneous linear 
equations is then, for instance, 

C cos(m’ft,) 
[ 

1 {C, cos(mfti) + S, sin(mft,)) 
I m 

- 1 {C, cos(ngt,) + S, sin(ngt,)} 
” 1 

= 1 cos(m’ft,) qqtJ (m’ = 1, 2, . ..). (2.21) 

E. Decoupling of the Tail Effects (Improvement of the 
Frequencies) 

We have now the first estimate of amplitudes, which can 
in turn be made use of in order to improve the first guess of 
the frequencies. We remember that the frequencies have 
been estimated through Eqs. (2.15) and (2.16), in which the 
original (raw) spectral data of FFT were adopted. However, 
each peak in a FFT spectrum is contaminated by long tails 
extended from the other peaks. Let us look at the FFT 
spectrum at F,(K), that is, 

1 C,sin(fT)-S,[cos(fT)- l] 
F,(K) x T f - 2nK/T 

x {C,cos(gjdt)+S,sin(gjdt)). (2.22) 

The second term in the right-hand side forms the tail 
extended from frequency g. The magnitude of the tail is not 
necessarily small in general, since it looks like 

Cg sin(gT) C, sin(gT) 
T g - 2rcK/T+ 7 g + 2nK/T 

(2.23) 

and thus its range is very long, just like the Coulomb poten- 
tial. It is a trivial work to remove the effect of the tail in 
Eq. (2.22) and, thus, we obtain the purer 
instance, 

F:(K)=FJK)-$;&os(y) 
J=o 

spectrum, for 

x [C,cos(gjdt)+S,sin(gjdt)], (2.24) 

which should be returned to Eq. (2.15) to reline the frequen- 
cies. 

The renewed frequencies are again inserted into 
Eq. (2.18), Eq. (2.19), or Eq. (2.21) to improve the 
amplitudes. This entire process should be iterated until a 
convergence is attained. 

F. The Iteration Methodfor the Amplitudes 

When we treat a spectrum composed of many peaks, the 
matrices and vectors in Eq. (2.18) become large. To avoid 
this, we can solve Eq. (2.18) in an iterative manner: Going 
back to Eqs. (2.10) and (2.1 l), we can set up the following 
linear equations for the amplitudes associated with the 
frequency f; 
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sin(fT) sin(fT) 
fT--2nK+fT+2xK 

cos(fT)- 1 cos(fT)- 1 
fT-2nK - fT+2nK 

cos(fT)- 1 cos(fT)- 1 
fT-2nK - fT+2nK 

sin(fT) sin(f T) 

fT-2xK-fT+2nK I 

where F,:. and Fi are the spectra in which the tail effects have 
been subtracted as in Eq. (2.22). The similar set of equa- 
tions can be set up for each frequency. In the calculation of 
the purified spectra F’, however, the amplitudes should 
have been known beforehand. Thus the procedure should be 
carried out iteratively. 

III. NUMERICAL EXAMPLES 

Here we present two simple, but not necessarily easy, 
examples to show how the method works. 

EXAMPLE I. The first example is confined to only two 
frequency cases for the sake of simplicity, although our pro- 
cedure and program are general. The iteration procedure 
from Subsection IIC to IIE has been performed. The matrix 
{A.,.} has been evaluated directly with Eq. (2.7). The 
sample functions are chosen to be exactly the same form as 
in Eq. (2.1). One is 

fjl = cos(5.5 t) + 2.0 sin( 11.0 t), 

where two frequencies are far apart and the other is 

q42 = cos( 10.5 t) + 2.0 sin( 11.0 t) 

which has relatively close frequencies, in which the tails 
have stronger magnitude. 

At, T, and N are varied. The standard values of At here is 
0.1, which is not very small compared with the shortest 
period in the above trigonometric functions involved, that 
is, about 0.571. The standard value of N here is 2048 (2”). 
This is a small-scale FFT. In short, our examples are set so 
that the conditions are not exceptionally good, or rather, 
relatively worse than the usual applications of FFT. The 
resolution of frequency in FFT is 

Af +-.&. (3.1) 

For our standard values of At and N, Af is about 0.030680, 
which means the resolution of frequency by the present FFT 
is up to the first decimal point below zero. 

The convergence has been judged when the successive 
improvement of the frequencies does not exceed 10 ~ 13. The 
number of iterations was generally about live to 10. Since 
the first guess of the frequencies and amplitudes are not 
relatively good, the second iteration improves their values 
significantly. The convergence after the second iteration is, 
hence, slow. 

The results are shown in Table I. Method A is referred to 
a procedure using Eq. (2.18) and B to that based on 
Eq. (2.19). As seen in the table, the results obtained are 
generally very good. In particular, the accuracy of the 
frequencies is far beyond the FFT resolution mentioned 
above. 

On the other hand, the accuracy of the amplitude is not 
as good as that of the frequencies. In particular, Method A 
reproduces the amplitudes rather poorly as noted in 
subsection IID. Method B, which is faster, gives better 
results as anticipated. 

In Eq. (2.9) the sum has been approximated by the 
integral. This must be crucial. Hence the result depends on 
how small AC can be chosen. On the other hand, if we let At 
become smaller with keeping N constant, Af becomes larger 
in accordance with Eq. (3.1) which in turn means that the 
dominance by the single term in Eq. (2.13) is deteriorated. 
Thus the better results are expected only when N is 
increased simultaneously. We choose At =0.05 and 
N = 4096 = 2l’. As seen in Table I, the errors both in the 
frequencies and amplitudes have been reduced by a factor of 
about 2. 

EXAMPLE II. This example has been taken from a 
realistic physical problem. Let us consider a classical 
Hamiltonian for the Morse oscillator, namely, 

ff=c+ (1 -ePy)*, (3.2) 

TABLE I 

The Frequencies and Amplitudes Extrated from the FFT Spectra 

Methods” . f  C, 

41 
Exact 

Ah 
A’ 
Bh 
B’ 

5.5ooooO 1.moo 
5.5ooO69 0.99n846 
5.5coO35 0.995401 
5.500069 1.000005 
5.5m34 l.OoOOO2 

o.oooim 
0.006965 
0.003507 
O.OOQO18 
o.oooo 10 

11.ooo000 O.OOi)OOO 
11.m004 -0.Om806 
11.000002 -0.OoO400 
11.ooO006 -0.oooOO5 
11 .ooooo3 - 0.000002 

10.5wOO0 l.OotxKm 0.000000 11.000000 0.000000 2.000000 
10.500061 0.990914 0.006258 11.OOOW1 -0.000243 1.999885 
10.500030 0.995432 0.003 152 11.Oooco1 ~0.000103 1.999953 
10.500055 1.000108 O.WOO72 11.oooO16 ~O.OONO7 1.999928 
10.500027 1.000057 O.OOCO32 11.OoOoO8 -0.000057 1.999968 

% g C, 

2.mOO 
1.999547 
1.999776 
1.999991 
1.999995 

s* 

a Method A is based on Eq. (2.18), while B is based on Eq. (2.19). 
hAt=0.1,N=2'1,Af=0.030680. 
'At = 0.05, N= 212, Af=O.O30680. 
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where q is a coordinate in configuration space and p is its 
conjugate momentum. In order to calculate the action 
variable I, 

‘=&-k&c 

we have defined a function B’(t) [4] 

1 
(3.4) 

along a classical trajectory (the solution of the Hamilton 
canonical equations of motion). It can be shown [4] that 
B’(t) can be represented as 

B’(t)=a+w 1 m[b, cos(mwt) - c, sin(mwt)], (3.5) 
WI=1 

where w  is the fundamental frequency of the oscillating 
motion. Since the Morse potential is highly anharmonic, 
B’(t) in Eq. (3.5) involves many harmonics. Then the action 
variable I can be represented in terms of the Fourier data 
such that 

I= - 1 mb,. 
m=l 

(3.6) 

The entire theory for the action-angle variables will be 
given elsewhere [4]. 

This time, we have carried out the larger scale FFT, that 
is, N= 16384 (214), and T= 12500.513 (dt=0.762971), 
so that the resolution of the present FFT is about 
(df= ) 0.00050. The amplitudes have been determined by 
Method C of Section IID. Some 20 harmonics have been 
observed in the power spectrum of B’(t). In the present 
calculation, the harmonics up to the 90th have been taken 
into account just for the safety in Eq. (2.21). The number of 
the sampling points for the least-squares procedure in 
Eq. (2.21) is 190, which is also sufficiently large. We picked 

TABLE II 

The Convergence of the Iterated Procedure 
to Remove the Tail Effect 

Energy II= 1” n = 2” n=3” 

0.243902 1.2297138 1.2297 138 1.2297138 
0.516154 0.98371325 0.98371325 0.98371325 
0.727889 0.73771371 0.73771373 0.73771373 
0.879109 0.49171319 0.49171313 0.49171313 
0.969812 0.24571486 0.24571470 0.24571470 

’ The fundamental frequencies in the n th iteration. 

TABLE III 

The Frequencies and Action Variables for the Morse Oscillator 

0.243902 1.229714 1.229714 0.184500 0.184500 
0.516154 0.983713 0.983713 0.430500 0.430500 
0.727889 0.737714 0.737714 0.676500 0.676500 
0.879109 0.491713 0.491713 0.922500 0.922507 
0.969812 0.245715 0.245715 1.168498 1.168500 

Note. The amplitudes have been determine by Method C, Eq. (2.21). 
” Exact frequency o(E) = [2(1 -./Z)]“‘, Ref. [S]. 
’ Approximate frequencies through the FFT data of 214 sampling points. 

The resolution of the present FFT is 0.000503. 
’ Exact action variable I(E) = 2’j2[ 1 - (1 - @I’*], Ref. [S]. 
d Approximate action variables through the FFT data, Eq. (3.6). 

up live energy points, each of which corresponds to the 
exactly quantized energy [2a]. 

The convergence of the iterated procedure to remove the 
tail effect is much faster than that of the first example, 
presumably because the size of the FFT here is much larger. 
This is shown in Table II, where the fundamental frequen- 
cies obtained at each iteration are displayed. For all energies 
the convergence has been attained in three iterations. 

In Table III, these values, together with the resultant 
action variables based on Eq. (3.6), are compared with the 
exact values, which happen to be available in analytical 
expressions [S]. The accuracy of our procedure for 
extracting the frequencies from the FFT data is remarkably 
good. The minor exceptions are the action variables Ie at 
E = 0.879101 and E = 0.969812. (Note that the dissociation 
limit is E = 1.0.) Closer examination has revealed that this is 
simply because the present FFT with N = 214 was too small 
to reproduce the very high harmonics having finite 
amplitudes. The errors are extremely small anyway. 

Martens and Ezra [2a] have performed FFT calculation 
over q(t) and p(t) for the same Morse potential with their 
own window technique. Some of their resultant frequencies, 
of which energies are slightly different from those of 
Table III, are referred to in Table IV, along with the exact 

TABLE IV 

The Fundamental Frequencies with the Window Technique u 

Energy(E) ~exz.ct b %lEO 

0.243903 1.229713 1.229711 
0.516156 0.983711 0.983711 
0.727895 0.737706 0.737708 
0.879119 0.491693 0.491691 
0.969816 0.245699 0.245700 

’ The results by Martens and Ezra, Ref. [2a]. 
‘The exact frequencies obtained with an analytical expression as in 

Table III. 
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values. Their accuracy is also very good, although some 
deviations are found in the last decimal place, and our 
results are actually exact in this level. Unfortunately, 
however, this comparison is not complete, since our 
experience about the practical labor for window technique 
is limited. In fact, it is this expected complication in 
manipulating the standard window technique that have 
driven us to devise the new practical method. In conclusion, 
except for a procedure for coding a computer program of 
the process described in Section II, which is really easy, the 
frequencies and amplitudes are computed simply and very 
accurately with our proposed method. 

IV. CONCLUDING REMARKS 

We have proposed an efficient and simple idea to extract 
the frequencies and amplitudes of a quasi-periodic function 
from FFT spectra. FFT is performed only once without use 
of any window function. The numerical results have been 
found very accurate. One of the most annoying parts of the 
numerical procedure of FFT is the selection of window 
functions. This shortcoming has been improved [2] by 
finding the standard windows. Although the window 
technique can avoid the truncation effect (the Gibbs 
phenomenon), still accurate frequencies are not obtained, 
unless the true frequencies happen to coincide with the grid 
point provided by FFT. To improve the situation, one 
either has to take a very long time (T in Eq. (3.1)) of 
sampling points to reduce Af (then a very large scale FFT 
is required if high frequency is necessary), or FFT should be 
repeatedly performed varying T so as to adjust a grid point 
of FFT to the true frequency (almost no hope for many 
frequency case). Interpolation method may be useful in this 

context. As far as we know, these delicate practices seem to 
demand some perception and experience, and thus are not 
appropriate for automated procedure. We hope that the 
present method can relax this situation in part. 

We have described our iterative procedure for extracting 
from FFT data both frequencies and amplitudes. It is 
stressed, however, that the single application of Eq. (2.16) 
already leads to much more accurate frequencies beyond 
FFT resolution. Thus even Eq. (2.16) alone can provide a 
good approximation scheme. 

Finally, the present procedure has been devised in a study 
of onset of Hamilton chaos. Its theoretical aspect and 
numerical examples will be presented elsewhere [6]. 
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